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1. Arithmetic and Algebra

1.1. Arithmetic of Numbers .
While we have calculators and computers to help us carry out calculations, it is

also important to be able to perform these by hand. Calculators and computers are
very good at working with numbers (provided we are careful to do the calculations
in the correct order) but they are not nearly as good at working with algebraic
expressions. Computers usually do not make mistakes working with algebraic ex-
pressions but you do not always end up with what you want. For example, you
may ask the computer to simplify something but the expression it gives you can be
more complicated than what you started with, or it may not be in the form you
want. There is also the problem when working with numbers in that we may want
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an exact answer as a multiple of a root or as a multiple of π, say, but the calculator
gives us an approximate decimal answer.

So we will start with numbers and then when we have found our feet we will
progress to algebraic expressions. Before we do any calculations, we will have a look
at the different sorts of numbers we will be working with throughout the course.
Please don’t worry too much about these at this stage, I have just included them
for reference. The main thing is that you are able to do the calculations.

Different Types of Numbers

• Natural Numbers: These are the ‘counting numbers’ 1, 2, 3, . . ., where as is
common in maths, I have used . . . to mean ‘and so on’. Note that some
books include 0 as a natural number, so it is important to check exactly
what is meant in any given text. This is a general feature of Mathematics;
notation varies from book to book, so please do bear this in mind. The set
of all natural numbers is denoted by N.

• Integers: These are the natural numbers together with their negatives and
zero. That is . . . ,−3,−2,−1, 0, 1, 2, 3, . . .. Note that all natural numbers are
also integers but not the other way around. The set of all integers is denoted
by Z.

• Rational Numbers: These are numbers of the form
a

b
where both a and b

are integers with b non-zero, such as
1

2
,
2

3
and

−3

4
= −3

4
. Note that all

integers are also rational numbers since, for example, we can write 2 as
2

1
.

Also note that there are infinitely many different ways we can write each

rational number. For example we can write
1

2
as

2

4
or

3

6
etc. The set of all

rational numbers is denoted by Q.
• Real Numbers: These include all the rational numbers and also all the re-
maining numbers such as

√
2 (the number that when multiplied by itself

gives 2) and π (the ratio of a circle’s circumference to its diameter) that
aren’t rational (we call these irrational numbers). We all have an intuitive
idea of what real numbers are and at this stage it is best to stick to that.
There is a formal definition but it would take a whole third year course to
explain it! The set of all real numbers is denoted by R.

• Complex Numbers: These are numbers of the form a+ bi where a and b are
real numbers and i is the ‘number’ with the property i2 = −1. We will touch
on these later in this course and there will also be a whole chapter on them
in the mathematics course you will take in the second trimester. The set of
all complex numbers is denoted by C.

Now we have had a look at the different sorts of number we will be working with,
let us do some calculations. We will start by looking at addition and subtraction.
In fact these are really the same thing since subtraction can be regarded as the
addition of a negative number. For example 3 − 2 = 3 + (−2) = 1. Looked at like
this, it doesn’t matter which order we do the calculations in. For example, say we
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wanted to calculate 3 − 5 + 11. Then a reasonable question is: Do we add 11 to
3−5 or do we subtract 5+11 from 3? However if we write the sum as 3+(−5)+11
then it is clear that the answer must be 9. It doesn’t matter if we add 3 + (−5) to
11 or 3 to (−5) + 11, we still end up with 9.

The question then arises, if we did want to subtract 5+ 11 from 3, how would we
write this down? The solution is to use brackets, these indicate that the sum inside
the bracket should be calculated first. So 3− (5 + 11) is what we want.

The other main thing to remember when dealing with subtraction is that two
minuses make a plus. So, for example, 2 − (−3) = 2 + 3 = 5. Note that here we
write −(−3) rather than −− 3.

Next let us have a look at how to add fractions and then we will do some examples.

Definition 1.1.1 (Addition of fractions). Given two fractions
a

b
and

c

d
, where b ̸= 0

and d ̸= 0, then
a

b
+

c

d
=

ad+ bc

bd
.

Remark 1.1.2. If a, b, c and d are all integers then Definition 1.1.1 reduces to the
concept of adding fractions by ‘putting them over a common denominator’ that you
will have met in school. However Definition 1.1.1 is much more general than that.
It could be that any of a, b, c and d are fractions or irrational numbers or algebraic
expressions, for example.

Warning 1.1.3. Note that we need the conditions b ̸= 0 and d ̸= 0. This is because

division by zero is not defined, so
1

0
, for example, does not mean anything and in

particular it certainly isn’t equal to zero!

Now let us do some examples. Later on in the chapter we will look at more general
expressions, but for the moment we will stick to examples where a, b, c and d are
integers.

Example 1.1.4.

(1)
2

5
+

1

7
=

(2)(7) + (5)(1)

(5)(7)
=

19

35
.

(2)
3

4
− 1

7
=

(3)(7) + (−1)(4)

(4)(7)
=

17

28
.

(3)
1

2
− (−3) =

1

2
+

3

1
=

(1)(1) + (3)(2)

2
=

7

2
.

(4)
1

2
−
(
− 1

12

)
=

1

2
+

1

12
=

(1)(12) + (1)(2)

(2)(12)
=

14

24
=

7

12
.

Remark 1.1.5. Note that in the last example above, it would be also correct to
use 12 as a common denominator instead of 24. We could also leave the answer as
14

24
, but if there is a common factor in the numerator and the denominator then it

is more usual to cancel it.

Now that we have had a look at addition and subtraction, let us have a look
at multiplication and division. As with addition and subtraction, these are also
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really opposite sides of the same coin. Division by a number a can be regarded as

multiplication by the reciprocal of a, i.e., multiplication by
1

a
. The definitions are

as follows.

Definition 1.1.6 (Multiplication of fractions). Given two fractions
a

b
and

c

d
, where

b ̸= 0 and d ̸= 0, then
a

b
× c

d
=

ac

bd
.

Definition 1.1.7 (Division of fractions). Given two fractions
a

b
and

c

d
, where b ̸= 0,

c ̸= 0 and d ̸= 0, then
a

b
÷ c

d
=

a

b
× d

c
=

ad

bc
.

Remark 1.1.8. As with Definition 1.1.1, these definitions reduce to the definitions
you will have met at school if a, b, c and d are all integers but are in fact much
more general than that, since a, b, c and d could be fractions or irrational numbers
or algebraic expressions.

Another important point to remember when multiplying or dividing is that two
minuses make a plus. So multiplying two negative numbers (or algebraic expressions)
will yield a positive number (or algebraic expression) and dividing a negative number
by a negative number will yield a positive number and of course the same holds for
algebraic expressions.

Now for some more examples, as above we will stick to the cases where a, b, c
and d are integers for now but we will look at more complicated examples later on
in the chapter.

Example 1.1.9.

(1)
1

2
× 3

4
=

(1)(3)

(2)(4)
=

3

8
.

(2) −2

3
× 5

4
=

(−2)(5)

(3)(4)
=

−10

12
= −5

6
.

(3) −2×
(
−7

9

)
=

−2

1
× −7

9
=

(−2)(−7)

(1)(9)
=

14

9
.

(4)
1

2
÷ 1

4
=

1

2
× 4

1
=

(1)(4)

(2)(1)
=

4

2
= 2.

(5) −5

7
÷ 2

9
=

−5

7
× 9

2
=

(−5)(9)

(7)(2)
= −45

14
.

(6) −1

3
÷ (−4) =

−1

3
× −1

4
=

(−1)(−1)

(3)(4)
=

1

12
.

Remark 1.1.10. When there are minus signs involved, there are usually different
ways to perform the calculation. For example in the last example, we could also use

−1

3
÷ (−4) =

−1

3
× 1

−4
=

(−1)(1)

(3)(−4)
=

−1

−12
=

1

12
. Of course, whichever approach we

take, the final answer MUST be the same if our method is correct. Also note that
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if there is a negative number after a multiplication or division sign, then we always
put the negative number in brackets.

For more complicated expressions, we also have to consider the order in which
we should do the calculations. For example, does 3 + 4× 5 mean that we calculate
3 + 4 and multiply the result by 5 or does it mean multiply 4 by 5 and then add
3 to the result? The rule is that we first do any calculations in brackets, then any
calculations involving multiplication and division (regarding division as multiplica-
tion by the reciprocal of the divisor) and finally any calculations involving addition
and subtraction (regarding subtraction as addition of the negative of the original
number). So 3 + 4× 5 means 3 + (4× 5) = 3 + 20 = 23. Note that in this case we
perform the calculation on the right first, so it is important to realise that we don’t
always work from left to right. Here are some examples.

Example 1.1.11.

(1) 2÷ 3× 4 + 6 = 2× 1

3
× 4 + 6 =

2

3
× 4 + 6 =

8

3
+ 6 =

8 + 18

3
=

26

3
.

(2) 2÷ 3× (4 + 6) = 2÷ 3× 10 = 2× 1

3
× 10 =

2

3
× 10 =

20

3
.

(3) 2÷ (3× 4 + 6) = 2÷ (12 + 6) = 2÷ 18 =
2

18
=

1

9
.

(4) 2÷ (3× 4) + 6 = 2÷ 12 + 6 =
2

12
+ 6 =

1

6
+ 6 =

1 + 36

6
=

37

6
.

We will do some more examples after we have covered indices: See Example 1.2.16.

1.2. Powers, Roots, Rules of Indices and Order of Operations .
In this section we will first look at powers and roots. In fact these are really the

same thing as we shall see shortly. We will start with the simplest case.

Definition 1.2.1 (n’th power). If n is a natural number and x is any number (even
a complex number), then the n’th power of x, denoted xn, is defined to be the
product of x with itself n times.

Using this definition, we can now say what an n’th root is.

Definition 1.2.2 (n’th root). If n is a natural number and x is a non-negative real
number, then the principal n’th root of x is defined to be the non-negative number,
denoted n

√
x, such that ( n

√
x)

n
= x.

Remark 1.2.3. If n = 2 (i.e., the square root) then we usually omit the 2 and just
write

√
x. We also usually say ‘cube root’ rather than ‘third root’. Definition 1.2.2

can be extended to the case where x is negative or indeed complex. We will do this
in Mathematics 2 that you will take in the next trimester but for the moment we
will stick to the case where x is non-negative. Also note that we sometimes write
x

1
n rather than n

√
x, so taking the n’th root of a number is the same thing as raising

it to the 1
n
’th power.

Warning 1.2.4. Note that Definition 1.2.2 says ‘non-negative real number’. This
is a point that causes a huge amount of confusion, so please do be careful. For
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example, the principal square root of 4 is 2. It is NOT −2 or ±2. It is true that
−2 is also a square root of 4 but this does NOT mean it is denoted by

√
4, it is

denoted by −
√
4.

Before we go any further, let us do a few examples.

Example 1.2.5.

(1) 23 = 2× 2× 2 = 8.
(2) (−3)2 = (−3)× (−3) = 9.

(3)

(
1

3

)3

=
1

3
× 1

3
× 1

3
=

1

27
.

(4)
√
9 = 9

1
2 = 3

(5) 3
√
8 = 8

1
3 = 2

(6) n
√
0 = 0

1
n = 0 for any natural number n.

Remark 1.2.6. There is a method for finding roots by hand but we won’t cover it
in this course. If we want to find roots to any particular degree of accuracy then
computers or calculators can be used. Please do note however that in nearly all
cases these are only approximations. For example, if we put

√
2 into a calculator,

we will obtain something like 1.414213562. This is not the actual square root of 2
(which is a non-repeating non-terminating decimal) but only an approximation to
it. So it would not be correct to write

√
2 = 1.414213562. What we should write is√

2 ≃ 1.414213562 or
√
2 = 1.414213562 (to 9 decimal places): See Section 1.4.

So far we have only defined powers where the power is either a natural number or
the reciprocal of a natural number. The next definition covers the case where the
power is a positive rational number.

Definition 1.2.7 (Positive rational powers). If m and n are natural numbers and
x is a non-negative real number, then the m

n
’th power of x, denoted x

m
n is defined

to be ( n
√
x)

m
=
(
x

1
n

)m
.

Remark 1.2.8. As was the case with Definition 1.2.2, this can be extended to the
case where x is a negative real number or indeed a complex number and we will study
this in the second trimester. It can also be generalised to the case where instead of
m
n
, we have a real or a complex number. This is the sort of problem that you would

encounter in a third year undergraduate course, so we won’t consider it in detail
here. Note that the general approach for a real exponent is that we approximate it
more and more closely by rational exponents and then ‘take the limit’. We will look
in more detail at limits when we study calculus.

We now know what xa means if a is a positive real number, so the next we need
to do is to extend the definition to the case when a is a negative real number. This
is the next definition.

Definition 1.2.9 (Negative powers). If a and x are positive real numbers, then the

−a’th power of x, denoted x−a is defined to be
1

xa
.
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Remark 1.2.10. As with the previous definitions, this can be extended to the case
where x is negative or complex (but not zero since that would involve division by
zero). Also note that the only power we have not yet defined is x0. This will be
dealt with in Theorem 1.2.12.

Now that we have made the definitions, let us do some examples.

Example 1.2.11.

(1) 27
2
3 =

(
3
√
27
)2

= 32 = 9.

(2) 16−
3
4 =

1

16
3
4

=
1(

4
√
16
)3 =

1

23
=

1

8
.

(3)

(
9

4

) 3
2

=

(
2

√
9

4

)3

=

(√
9

4

)3

=

(
3

2

)3

=
27

8
.

(4)

(
81

256

)− 5
4

=
1(

81

256

) 5
4

=
1(

4

√
81

256

)5 =
1(
3

4

)5 =
1

243/1024
=

1024

243
.

We will also need to have some general rules that will allow us to manipulate
indices and these are listed in the following theorem.

Theorem 1.2.12 (Rules of indices). Let x be a positive real number and let m and
n be real numbers, then

(1) xm × xn = xm+n.
(2) (xm)n = xmn.
(3) xm ÷ xn = xm−n.
(4) x0 = 1.
(5) x1 = x.

Remark 1.2.13. In fact most of these rules hold when x is zero or negative but
there are some exceptions and sometimes if x is negative then we will end up with
complex numbers, so we do need to be careful. In this course I will not ask you
about any of these tricky situations however.

I think it is also important to understand where these results have come from,
since if you do, you don’t have to memorize them, you can just derive them whenever
you need them. So below I will indicate how the results can be justified if m and n
are natural numbers. If you find the arguments hard to follow, then my advice is to
first use actual numbers for m and n. You will then be better able to understand
the general case.

(1) xm means x multiplied by itself m times and xn means x multiplied by itself
n times, so xm × xn is x multiplied by itself m + n times. That is xm+n.
Expressed algebraically

xm × xn = x× · · · × x︸ ︷︷ ︸
m terms

×x× · · · × x︸ ︷︷ ︸
n terms

= x× · · · × x︸ ︷︷ ︸
m+n terms

= xm+n.

Note that here we have used the notation ‘· · · ’ which means ‘and so on’.
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(2) xm means x multiplied by itself m times and we are multiplying this by itself
n times, so we end up with x multiplied by itself mn times, which is xmn.
Expressed algebraically

(xm)n = xm × · · · × xm︸ ︷︷ ︸
n terms

= x× · · · × x︸ ︷︷ ︸
mn terms

= xmn.

(3) Here we will first look at the case when m > n. xm ÷ xn means we start
with x multiplied by itself m times but we divide by x multiplied by itself n
times, so these cancel with n of the x’s in the numerator and we are left with
x multiplied by itself m− n times, which is xm−n. Expressed algebraically

xm ÷ xn =

x× · · · × x︸ ︷︷ ︸
m terms

x× · · · × x︸ ︷︷ ︸
n terms

= x× · · · × x︸ ︷︷ ︸
m−n terms

= xm−n

Now suppose that m < n. Then, using the above equation,

xm ÷ xn =
1

xn ÷ xm
=

1

xn−m
= x−(n−m) = xm−n.

(4) This is Case (3) with m = n. We will assume (3) and see where this leads us.
On the left hand side of xm ÷ xn = xm−n we have xm ÷ xm which is 1 since
anything (except 0) divided by itself is 1. The right hand side is xm−m = x0,
so we obtain x0 = 1. Note this is not true if x = 0 since 00 is not defined,
i.e., it has no meaning, so it can’t be equal to anything.

(5) This is case (3) with m = n + 1. For example if we take n = 2 and m = 3

the left hand side of xm ÷ xn = xm−n is x3 ÷ x2 =
x× x× x

x× x
= x while the

right hand side is x3−2 = x1 and so we obtain x1 = x.

Warning 1.2.14. The above justifications are not rigorous and would not be con-
sidered proofs. For example we didn’t consider the case where m and n are not
integers and in (3) we assumed the case when m = n. It would be really quite hard
to give a rigorous proof of the general case where m and n are real numbers, but I
still think the justifications are very useful, since it gives you an idea of where the
rules come from and this makes them much easier to understand, remember and
use.

Although the above will hopefully help you remember the rules, the most impor-
tant thing is to be able to use them, so here are some examples.

Example 1.2.15.

(1) x10 × x12 = x10+12 = x22.

(2) x9 × x−11 = x9+(−11) = x−2 =
1

x2
.

Note that x−2 would also be acceptable as a final answer here.
(3) x

1
2 × x

2
3 = x

1
2
+ 2

3 = x
3+4
6 = x

7
6 .

(4) (x2)
3
= x2×3 = x6.

(5) (x−2)
−3

= x−2×(−3) = x6.
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(6)
(
x

2
3

)− 5
4
= x

2
3
×(− 5

4
) = x− 10

12 = x− 5
6 .

In this case
1

x
5
6

would also be acceptable as an answer.

(7) x3 ÷ x7 = x3−7 = x−4 =
1

x4
.

Here we could also leave the answer as x−4.
(8) x− 1

2 ÷ x− 2
3 = x− 1

2
−(− 2

3) = x− 1
2
+ 2

3 = x
1
6 .

(9) 10 = 1.
(10) π0 = 1.

(11)
(
x

4
5 × x− 2

3

)− 3
4
=
(
x

4
5
− 2

3

)− 3
4
=
(
x

2
15

)− 3
4
= x

2
15

×(− 3
4) = x− 6

60 = x− 1
10 =

1

x
1
10

.

Here we could also leave the answer as x− 1
10 .

As we did with multiplication/division and addition/subtraction, we also have
to consider which operation do we perform first. The order is as follows: Brackets
have the highest priority, followed by powers/roots (which as we saw above are essen-
tially the same thing), then multiplication/division and finally addition/subtraction.
There are several different mnemonics for remembering this order: BIMDAS is one.
This stands for Brackets Indices Multiplication Division Addition Subtraction. Do
also remember however that multiplication and division have equal priority as do
addition and subtraction. Here are some examples.

Example 1.2.16.

(1) 2× 32 = 2× 9 = 18.
(2) (2× 3)2 = 62 = 36.

(3) 2÷ 33 + 2 = 2÷ 27 + 2 = 2× 1

27
+ 2 =

2

27
+ 2 =

2 + 54

27
=

56

27
.

(4) 2÷ (33 + 2) = 2÷ (27 + 2) = 2÷ 29 =
2

29
.

(5) (2÷ 3)3 + 2 =

(
2

3

)3

+ 2 =
23

33
+ 2 =

8

27
+ 2 =

8 + 54

27
=

62

27
.

(6) 2÷3×4+52 = 2÷3×4+25 = 2× 1

3
×4+25 =

2

3
×4+25 =

8

3
+25 =

8 + 75

3

=
83

3
.

(7) 2÷ 3× (4+5)2 = 2÷ 3× 92 = 2÷ 3× 81 = 2× 1

3
× 81 =

2

3
× 81 =

162

3
= 54.

(8) 2÷ (3× 4 + 5)2 = 2÷ (12 + 5)2 = 2÷ 172 = 2÷ 289 =
2

289
.

(9) 2÷ (3× 4 + 52) = 2÷ (3× 4 + 25) = 2÷ (12 + 25) = 2÷ 37 =
2

37
.

(10) (2÷ 3× 4 + 5)2 =

(
2× 1

3
× 4 + 5

)2

=

(
2

3
× 4 + 5

)2

=

(
8

3
+ 5

)2

=

(
8 + 15

3

)2

=

(
23

3

)2

=
232

32
=

529

9
.
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(11) (2÷3× (4+5))2 = (2÷3×9)2 =

(
2× 1

3
× 9

)2

=

(
2

3
× 9

)2

=

(
18

3

)2

= 62

= 36.

Warning 1.2.17. There still remains the question of what xyz means. Does it mean
(xy)z or x(yz)? It would be expected that this should mean (xy)z since that is what
we get if we work from left to right. However it is in fact taken to mean x(yz). This
is a bit strange and the explanation is that if we wanted to write (xy)z we would
write xy×z, so we take xyz to mean x(yz). What I suggest in situations like this is
to use brackets to make it absolutely plain what you mean. In fact this is a general
piece of advice; if you think a particular expression could be ambiguous then it is
better to use extra brackets to explain what you mean. You can never go wrong by
using extra brackets but sometimes you can by not using enough.

Theorem 1.2.12 dealt with the case where we were only dealing with powers of a
single number or variable. However sometimes we have a power of a product and in
this case the following theorem can prove to be very useful.

Theorem 1.2.18. Le x and y be positive real numbers and let a be a real number,
then

(1) (x× y)a = xa × ya.

Remark 1.2.19. As was the case with Theorem 1.2.12, this theorem is also true
in a lot of cases when x and y are not positive but these cases can prove to be
complicated and can involve complex numbers, so I won’t deal with these cases
here.

Also note that when writing mathematics, the multiplication sign × is often
replaced with a dot or indeed omitted altogether. So (1) can also be written
(x · y)a = xa · ya or even (xy)a = xaya. From now on I will use any of these
notations interchangeably; one thing you have to get used to in maths is the wide
variety of notation used, even when exactly the same thing is meant. Of course we
do also have to guard against ambiguity. For example, if we want to denote 2 times
3 then we have to be careful writing 2 ·3 since this could be mistaken for the decimal
2 point 3 and of course we can’t omit the dot altogether since then we would have
twenty three.

Now let us have a look at some examples which use Theorem 1.2.18.

Example 1.2.20.

(1) (
√
xy)

2
= (

√
x)

2
y2 = xy2.

(2) (x−2y3)
−4

= (x−2)
−4

(y3)
−4

= x−2(−4)y3(−4) = x8y−12 =
x8

y12
.

Here we could also leave the answer as x8y−12.
(3) (x2y3z4)

5
= ((x2y3) z4)

5
= (x2y3)

5
(z4)

5
= (x2)

5
(y3)

5
(z4)

5
= x2×5y3×5z4×5

= x10y15z20.
10



1.3. Logarithms .
In Section 1.2 we saw that roots and indices are the same thing and in this section

we will see that logarithms are also indices. Let us start with the definition.

Definition 1.3.1 (Logarithm). Let a and x be real numbers with a > 1 and x > 0.
Then the logarithm of x to the base a, denoted loga x, is the number y such that
x = ay.

Remark 1.3.2. That is the logarithm is the power a has to be risen to in order to
obtain x. That is why I said above that logarithms are indices.

Sometimes logarithms are also defined if 0 < a < 1 but these are so rarely used I
won’t deal with them here (if I did, it would cause complications below).

Warning 1.3.3. Note that x has to be a positive number. The log of zero or a
negative number is not defined, i.e., it doesn’t exist.

While we will usually use a calculator to find logs, I think it is also important to
start out by doing some simple ones by hand, since this will help you to understand
the concept. So here are some examples.

Example 1.3.4.

(1) Find log2 8.
Since 23 = 8, it follows that log2 8 = 3.

(2) Find log3 3.
Since 31 = 3, it follows that log3 3 = 1.
In fact loga a = 1 for any a > 0, since a1 = a.

(3) Find log4 2.

Since 4
1
2 = 2, it follows that log4 2 = 1

2
.

(4) Find log10 1.
Since 100 = 1, it follows that log10 1 = 0.
In fact loga 1 = 0 for any a > 0, since a0 = 1.

(5) Find log5

(
1

25

)
.

Since
1

25
= 5−2, it follows that log5

(
1

25

)
= −2.

(6) Find log8

(
1

2

)
.

Since
1

2
= 8−

1
3 , it follows that log8

(
1

2

)
= −1

3
.

Note that in the above examples, loga x > 0 if x > 1 and loga x < 0 if x < 1. In
fact this is always true.

Proposition 1.3.5. Let a and x be real numbers with a > 1 and x > 0. Then

(1) loga x < 0 if x < 1.
(2) loga 1 = 0.
(3) loga x > 0 if x > 1.

11



As a ‘challenge problem’, see if you can figure out why (1) and (3) hold.
I think it is also useful to see what the graph of the logarithm function looks like

(we will return to graphs in Chapter 4, where I will formally say what they are).
In Figure 1 I have plotted the graph for various values of a. This figure gives a
good visual illustration of Proposition 1.3.5. Note that the graphs all lie to the right
of the y-axis (since log is only defined for x > 0), they all lie below the x-axis for
0 < x < 1 (this is (1)), they all cut the x-axis at x = 1 (this is (2)) and they all lie
above the x-axis for x > 1 (this is (3)).

Figure 1. The graphs of y = loga x for a = 2, a = e and a = 10.

I have just plotted the graphs for a = 2, a = e and a = 10, since these are the
values of a that you will most likely meet. Logs to the base 2 are used in Computer
Science. Logs to the base 10 were often used for calculation (we will see in Theorem
1.3.7, items (1) and (2) that logs convert multiplication into addition and taking
powers to multiplication) in the days before calculators but are not so common
these days. Logs to the base e arise naturally in many different areas of science and
this will most probably be the base that you encounter the most. We will meet e
again when we study calculus, but for the moment we will note that it is a number as
important in calculus as π is important in geometry and trigonometry. Like π, e is a
special sort of irrational number called a transcendental number. You don’t need to
know what this means for this course, but for those of you that have met polynomials,
it means that it is not the root of a polynomial with integer coefficients. In common
with all irrational numbers, e cannot be written down exactly as a decimal, since
it doesn’t repeat or terminate. It is approximately equal to 2.718 to three decimal
places (we will look at decimal places in Section 1.4).

Please also note some other features of all the functions. The all get very large
and negative as x gets close to zero, they all increase as x increases and they all get

12



very large as x gets very large (this last feature may not be completely apparent
from the graph but it is true).

Warning 1.3.6. We also have to be careful with notation when dealing with logs
since different books use different notation. Depending on the book (or course) log x
(where the subscript is omitted) may mean log to the base e or log to the base 10,
so it is essential at the start to find out exactly what it does mean. Logs to the base
e may also be denoted by ln x and this is what I would recommend if you have the
choice since ln x never stands for anything else.

As was the case with indices, there are several rules that allow us to simplify
logarithms. These, together with some points covered above, are listed in the next
theorem.

Theorem 1.3.7 (Rules of logarithms). Let a, b, m, x and y be real numbers with
a, b > 1 and x, y > 0. Then

(1) loga(xy) = loga x+ loga y.
(2) loga (x

m) = m loga x.

(3) loga

(
x

y

)
= loga x− loga y.

(4) loga 1 = 0.
(5) loga a = 1.

(6) loga x =
logb x

logb a
.

(7) aloga x = x.
(8) loga (a

x) = x.

Remark 1.3.8. In fact the first five items in Theorem 1.3.7 follow from the corre-
sponding items in Theorem 1.2.12. I won’t give the details here, since at this stage
it is more important to be able to use the rules rather than to prove them. However
I think just knowing that they follow will make it easier to get used to both sets of
rules. If you want to try a ‘challenge problem’, then have a go at trying to prove
the first three items.

Item (6) enables us to calculate a log to any base we want even though most
calculators are only able to calculate logs to the bases e and 10.
Item (7) is just the definition of a log and (8) follows from (2) and (5).

Warning 1.3.9. Note that in general it isNOT true that loga(x+y) = loga x+loga y
or that loga(xy) = loga x× loga y.

Now let us do some examples where we use Theorem 1.3.7 to simplify various
expressions.

Example 1.3.10.

(1) loga (xy
2) = loga x+ loga (y

2) = loga x+ 2 loga y.

(2) loga

((
x

y

)4
)

= 4 loga

(
x

y

)
= 4(loga x− loga y) = 4 loga x− 4 loga y.

13



(3) loga

(
x3

y
1
2

)
= loga (x

3)− loga

(
y

1
2

)
= 3 loga x− 1

2
loga y.

(4) loga
(
xlogb a

)
= logb a× loga x = logb x.

1.4. Decimal Places, Significant Figures and Scientific Notation .
While in pure mathematics, we often deal with algebraic expressions or exact

values, when we use mathematics in other scientific disciplines we will usually be
dealing with data which will be approximate. In this section, we will start to look
at the way approximations should be treated.

Firstly, I think the most important thing to realise is that = has a very specific
meaning in mathematics. It means that two expressions or numbers are equal and
it should only be used in this precise situation. It should NOT be used (at least
on its own) if two expressions or numbers are only approximately equal. Note that
even if two numbers agree to the first billion digits, this does not mean that they are
equal. Also note that if you calculate something using a calculator, this does not

mean that the answer is ‘correct’. For example, if I put
π

2
into my calculator I get

1.570796327. This does not mean that
π

2
= 1.570796327. In fact

π

2
= 1.570796327

can’t be true since
π

2
is a non-repeating, non-terminating decimal.

Now that we have had a look at what we should not do, we will look at what
we should do. First let us look at rounding positive numbers to a given number of
decimal places. Say we want to round a positive number to n decimal places. What
we do is to look at the n+ 1’th decimal place and

• If it is five or more we round up.
• If it is four or less we round down.

Warning 1.4.1. Note that there can be cases where more than the n’th decimal
place changes. For example 19.96 is 20.0 to one decimal place, so that in this case
all three of the digits we end up with are different to those we start with.

Also note that if we give an answer to n decimal places, we should always write
down n decimal places, even if there are zeros on the right (these are sometimes
called trailing zeros). So, in the above example 20 would not be correct, it must be
20.0 if we are giving the answer to one decimal place.

Here are some examples.

Example 1.4.2.

(1) 21.543 = 21.5 to one decimal place.
Note that here we are allowed to use ‘=’ since we indicate that we are only
saying the numbers are equal to one decimal place.
Also note that ‘one decimal place’ is often abbreviated to ‘1 d.p.’

(2) 35.235 = 35.24 to 2 d.p.
(3) 0.000423 = 0.000 to 3 d.p.
(4) 5 = 5.00 to 2 d.p.

Note that although this is correct mathematically (where we just quote the
14



number to the given number of decimal places), it might not be correct in
physics, for example, since the 5 may just mean that the measurement is to
the nearest integer.

Now let us look at rounding negative numbers to n decimal places. This is another
area where different books can tell you different things but if we want to be consistent
with the way we rounded positive numbers then the rules have to be as follows: We
look at the n+ 1’th decimal place and

• If it is five or less we round up.
• If it is six or more we round down.

This may seem a bit strange but if we study the number line in Figure 2, hopefully
everything will become clear.

Figure 2. Number line illustrating rounding to one decimal place.

The green points (-0.26 and 0.24) both lie closer to the black numbers on the left
(-0.3 and 0.2) so both should be rounded down (that is to the left). So −0.26 = −0.3
and 0.24 = 0.2 both to 1 d.p. The blue points (-0.15 and 0.15) both lie exactly
between the black numbers to the left and the right (-0.2 and -0.1, and 0.1 and 0.2,
respectively) so, as a rule of thumb, we are going to round them up (that is to the
right). So −0.15 = −0.1 and 0.15 = 0.2 both to 1 d.p. The red points (-0.04 and
0.06) both lie closer to the black numbers on the right (0 and 0.1) so both should
be rounded up (that is to the right). So −0.04 = 0.0 and 0.06 = 0.1 both to 1 d.p.

Here are some more examples involving negative numbers.

Example 1.4.3.

(1) −1.66 = −1.7 to 1 d.p.
(2) −5.2755 = −5.275 to 3 d.p.
(3) −0.455 = −0.45 to 2 d.p.
(4) −3.999 = −4.00 to 2 d.p.

While approximating a number to a particular number of decimal places is some-
times a good idea, there will be other situations where it is not appropriate. For
example if we are measuring some astronomical distance and we can measure it to
the nearest 1% then it would not be possible to give the measurement in miles to
any number of decimal places, since we don’t have sufficient accuracy. In situations
like this it is more appropriate to give our answer to a certain number of significant
figures. The first significant figure is the first non-zero digit counting from the left,
and the second significant figure is the next digit to the right of this, and so on.
So, in the above situation, where we can measure something to the nearest 1%, we
could quote the measurement to two significant figures.

The actual rules for rounding are the same as those we used for decimal places,
so let us look at some examples.
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Example 1.4.4.

(1) 64528562 = 65000000 to two significant figures.
Note that ‘two significant figures’ is often abbreviated to ‘2 s.f.’

(2) 0.003456 = 0.00346 to 3 s.f.
(3) 0.999 = 1 to 1 s.f.
(4) 6 = 6.000 to 4 s.f.

Note again here that while this is correct mathematically, it might not be
appropriate in a given scientific situation.

(5) −2.886 = −2.89 to 3 s.f.
(6) −0.5 = −0.50 to 2 s.f.
(7) −0.6 = −0.6 to 1 s.f.

As we noted above, 65000000 to 2 s.f. might be a reasonable way to give our
measurement if it is accurate to 1% but this is still not really the best way to
present our data, since someone else reading our report has to go to the trouble
of counting the number of zeros. This is not too much work in this case but if
there were 35 zeros, say, it would entail quite a lot of effort. This is where scientific
notation comes into its own. The idea is to write a number as x × 10a, where a
is an integer and is usually chosen so that 1 ⩽ x < 10 for positive numbers and
−10 < x ⩽ −1 for negative numbers (note these two conditions can also be written
1 ⩽ |x| < 10, where |x| is the absolute value of x). Here are some examples (the
numbers on the right are in scientific notation).

Example 1.4.5.

(1) 2395738 = 2.395738× 106.
(2) 0.0000635 = 6.35× 10−5.
(3) 5.53 = 5.53× 100.

Note that sometimes we omit the 100 in cases like this.
(4) 34 = 3.4× 101.
(5) 0.9 = 9× 10−1.

Remark 1.4.6. The examples above show that to convert any number to scientific
notation, we count the number of places we have to move the decimal point (counting
left as positive and right as negative) so that it ends up to the right of the first non-
zero digit (from the left) and this number then becomes the exponent of the 10.

Of course, sometimes we will want to convert a number in scientific notation back
to ordinary notation and in this case we just reverse the above process. That is we
move the decimal point by the number of places indicated by the exponent of 10
(where a negative number means move the decimal point to the left and a positive
number means move it to the right). Here are some examples.

Example 1.4.7.

(1) 2.653× 107 = 26530000.
(2) 4.21× 10−5 = 0.0000421.
(3) 3.21× 1025 = 32100000000000000000000000.

This last example shows why scientific notation is so useful.
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We can also combine scientific notation with significant figures (but not usually
with decimal places) and this is quite often the way data is displayed in science.
Here are some examples.

Example 1.4.8.

(1) 73857647 = 7.4× 107 to 2 s.f.
(2) 0.00004555 = 4.56× 10−5 to 3 s.f.
(3) −2345.5 = −2.345× 103 to 4 s.f.
(4) −0.0005 = −5.0000× 10−4 to 5 s.f.

Note again that while this is correct mathematically, it might not be appro-
priate scientifically.

1.5. Arithmetic of Algebraic Expressions.
Although we have already manipulated some algebraic expressions, we are now

going to look in more detail at adding, subtracting, multiplying and dividing alge-
braic expressions. In this chapter we will deal with expressions containing powers
of x.

1.5.1. Addition of Algebraic Expressions .
As we did when we dealt with numbers in Section 1.1 we will deal with addition

and subtraction at the same time since they are essentially the same thing. The
main idea is to collect together terms that have the same power and then add their
coefficients. As is usual with maths the best way to learn is to have a look at some
examples and then do some problems, so here are a few examples.

Example 1.5.1.

(1)

(x2 + 3x− 2) + (x3 − 2x2 + 5x+ 2)

= x3 + (x2 − 2x2) + (3x+ 5x) + (−2 + 2)

= x3 − x2 + 8x.

(2)

(−x4 + 5x3 − 3x+ 5)− (6x3 − 4x2 − 3)

= −x4 + (5x3 − 6x3)− (−4x2)− 3x+ (5− (−3))

= −x4 − x3 + 4x2 − 3x+ 8.

(3)

(x5 − 6x2 + 2− 2x−2) + (−x5 − 4x3 − 4x2 − x−1 − 3x−2)

= (x5 − x5)− 4x3 + (−6x2 − 4x2) + 2− x−1 + (−2x−2 − 3x−2)

= −4x3 − 10x2 + 2− x−1 − 5x−2.

Remark 1.5.2. It is not necessary to include the middle step in each of these
calculations once you have got the hand of things. I have just included it to make
it obvious exactly what is happening.

17



1.5.2. Multiplication of Algebraic Expressions .
Next we come to multiplication. While not difficult, we do have to keep our

wits about us here, since it is easy to make a mistake if we are not careful. The
main thing to remember is that if we are multiplying two expressions together, then
each term in the first expression has to be multiplied by each term in the second
expression. These individual terms are multiplied by multiplying the coefficient and
multiplying the powers of x using the rules of indices. Here are some examples to
show you how it works.

Example 1.5.3.

(1)

2x2(3x+ 4x2) = (2x2)(3x) + (2x2)(4x2)

= (2)(3)x2+1 + (2)(4)x2+2

= 6x3 + 8x4.

(2)

(3x3 − 5)(2x2 + 3x) = 3x3(2x2 + 3x)− 5(2x2 + 3x)

= (3x3)(2x2) + (3x3)(3x) + (−5)(2x2) + (−5)(3x)

= (3)(2)x3+2 + (3)(3)x3+1 + (−5)(2)x2 + (−5)(3)x

= 6x5 + 9x4 − 10x2 − 15x.

(3)

(2x2 + 1)2 = (2x2 + 1)(2x2 + 1)

= 2x2(2x2 + 1) + 1(2x2 + 1)

= (2x2)(2x2) + (2x2)(1) + (1)(2x2) + (1)(1)

= (2)(2)x2+2 + 2x2 + 2x2 + 1

= 4x4 + 4x2 + 1.

Note that this example shows that we can also calculate powers of an alge-
braic expression using this technique, provided the power is a natural num-
ber. We will return to the subject of finding powers of algebraic expressions
when we study The Binomial Theorem in Section 1.6.
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(4)

(−3x2 + 5x− 3)(2x2 − 3x−1)

=− 3x2(2x2 − 3x−1) + 5x(2x2 − 3x−1)− 3(2x2 − 3x−1)

=(−3x2)(2x2) + (−3x2)(−3x−1) + (5x)(2x2)

+ (5x)(−3x−1) + (−3)(2x2) + (−3)(−3x−1)

=(−3)(2)x2+2 + (−3)(−3)x2−1 + (5)(2)x1+2

+ (5)(−3)x1−1 + (−3)(2)x2 + (−3)(−3)x−1

=− 6x4 + 9x1 + 10x3 − 15x0 − 6x2 + 9x−1

=− 6x4 + 9x+ 10x3 − 15− 6x2 + 9x−1

=− 6x4 + 10x3 − 6x2 + 9x− 15 + 9x−1.

(5)

(2x3 − 5x2 + 3x)(−4x3 + x2 − 2x)

=2x3(−4x3 + x2 − 2x)− 5x2(−4x3 + x2 − 2x)+

+ 3x(−4x3 + x2 − 2x)

=(2x3)(−4x3) + (2x3)(x2) + (2x3)(−2x)

+ (−5x2)(−4x3) + (−5x2)(x2) + (−5x2)(−2x)

+ (3x)(−4x3) + (3x)(x2) + (3x)(−2x)

=(2)(−4)x3+3 + (2)(1)x3+2 + (2)(−2)x3+1

+ (−5)(−4)x2+3 + (−5)(1)x2+2 + (−5)(−2)x2+1

+ (3)(−4)x1+3 + (3)(1)x1+2 + (3)(−2)x1+1

=− 8x6 + 2x5 − 4x4 + 20x5 − 5x4 + 10x3 − 12x4 + 3x3 − 6x2

=− 8x6 + 2x5 + 20x5 − 4x4 − 5x4 − 12x4 + 10x3 + 3x3 − 6x2

=− 8x6 + 22x5 − 21x4 + 13x3 − 6x2.

Remark 1.5.4. I recommend that you approach these problems systematically. For
example, note how I have started with the expression on the left and taken each of
its terms in order and multiplied them by the whole of the expression on the right.
There is no mathematical reason why you have to do it this way, for example, you
could start with the expression on the right and multiply each of its terms with the
whole of the expression on the left. What is very important though is that you take
the same approach each time. If you don’t then it will be almost certain that you
will make a mistake.

1.5.3. Long Division of Numbers .
Having had a look at multiplication, we will now examine division. Unfortunately

when dealing with algebraic expressions, division is a lot more complicated than it
was when dealing with numbers. On the one hand, given an algebraic expression,
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say x2 + x + 1, then division by this expression is the same as multiplication by
1

x2 + x+ 1
, as was the case with numbers. However, the problem is that this doesn’t

get us anywhere since we don’t know how to multiply a general algebraic expression

by
1

x2 + x+ 1
.

The solution is to use long division. You will have used this in school for dividing
numbers and we will adapt this technique for algebraic expressions. Before we do
this however, we will revise the technique as used for numbers. When we divide
one number into another using long division, then there are essentially two different
approaches we can take. Firstly, we can keep going until we have the quotient to any
required degree of accuracy. Another approach is sometimes used if we are dividing
a natural number a by another natural number b. We can find natural numbers q
and r with 0 ⩽ r < b such that a = qb+ r. In this case q is called the quotient and

r is called the remainder. Note that we can also write a = qb + r as
a

b
= q +

r

b
. It

is this approach that is generalised when dealing with algebraic expressions, so this
is what we will revise. Here are some examples.

Example 1.5.5.

(1) 8270

7
)
57894
56000

1894
1400

494
490

4

So in this case we have
57894

7
= 8270 +

4

7
.

That is the quotient is 8270 and the remainder is 4.

(2) 12845

8
)
102760
80000

22760
16000

6760
6400

360
320

40
40

0
20



So
102760

8
= 12845 and the remainder is zero in this case.

(3) 4382

56
)
245393
224000

21393
16800

4593
4480

113
112

1

So
245393

56
= 4382 +

1

56
.

That is the quotient is 4382 and the remainder is 1.

(4) 83927

672
)
56399502
53760000

2639502
2016000

623502
604800

18702
13440

5262
4704

558

So
56399502

672
= 83927 +

558

672
.

That is the quotient is 83927 and the remainder is 558.

1.5.4. Polynomial Long Division .
Now that we have had a look at numbers let us move on to algebraic expressions.

We will restrict ourselves to looking at sums of terms of the form axb where a and
b are integers with b non-negative (technically these sorts of expressions are called
polynomials with integer coefficients).

The technique is very similar to that used with numbers, the only difference is
that instead of obtaining digits at the top, we will obtain terms of the form axb,
where b is a non-negative integer and a is a rational number. The easiest way to see
what I mean will be to go through some examples.
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Example 1.5.6.

(1) x− 1

x+ 2
)

x2 + x + 1
− x2 − 2x

− x + 1
x + 2

3

This tells us that
x2 + x+ 1

x+ 2
= x− 1 +

3

x+ 2
.

So the quotient is x− 1 and the remainder is 3.

(2) x2 + 1

x+ 1
)

x3 + x2 + x + 1
− x3 − x2

x + 1
− x− 1

0

This tells us that
x3 + x2 + x+ 1

x+ 1
= x2 + 1.

So the quotient is x2 + 1 and the remainder is 0.
Note that this example shows us that if we know one factor of an expression,
then we can use division to find the other factor. For example, say we knew
that x + 1 was a factor of x3 + x2 + x + 1, then using division, we see that
the other factor is x2 + 1.

(3) x2 − 2x + 4

3x+ 1
)

3x3 − 5x2 + 10x− 3
− 3x3 − x2

− 6x2 + 10x
6x2 + 2x

12x− 3
− 12x− 4

− 7

.

This tells us that
3x3 − 5x2 + 10x− 3

3x+ 1
= x2 − 2x+ 4 +

−7

3x+ 1
.

So the quotient is x2 − 2x+ 4 and the remainder is −7.
Note that when dealing with algebraic expressions, the remainder does not
have to be positive.
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(4) x2 − 3
2
x + 5

4

2x+ 1
)

2x3 − 2x2 + x + 2
− 2x3 − x2

− 3x2 + x
3x2 + 3

2
x

5
2
x + 2

− 5
2
x− 5

4
3
4

.

This tells us that
2x3 − 2x2 + x+ 2

2x+ 1
= x2 − 3

2
x+

5

4
+

3
4

2x+ 1
.

So the quotient is x2 − 3

2
x+

5

4
and the remainder is

3

4
.

(5) 4x2 − x − 7

x2 + x+ 2
)

4x4 + 3x3 + 2x + 1
− 4x4 − 4x3 − 8x2

− x3 − 8x2 + 2x
x3 + x2 + 2x

− 7x2 + 4x + 1
7x2 + 7x+ 14

11x+ 15

.

This tells us that
4x4 + 3x3 + 2x+ 1

x2 + x+ 2
= 4x2 − x− 7 +

11x+ 15

x2 + x+ 2
.

So the quotient is 4x2 − x− 7 and the remainder is 11x+ 15.
Note that the remainder does not even have to be a number but what is
true is that the highest power of x in the remainder has to be lower than the
highest power of x in the divisor.

Remark 1.5.7. As always in maths, it is good practice to check our answer once
we have obtained it and this is especially important when there are plenty of places
to go wrong, as in this case. Fortunately there is a good way of checking our answer
here; we have to check that the final equation holds. For example, let us have a look
at the last example. We have to check that

4x4 + 3x3 + 2x+ 1

x2 + x+ 2
= 4x2 − x− 7 +

11x+ 15

x2 + x+ 2

or equivalently that 4x4 + 3x3 + 2x+ 1 = (4x2 − x− 7)(x2 + x+ 2) + 11x+ 15. So
we just have to multiply out (4x2 − x− 7)(x2 + x+ 2) + 11x+ 15 and check that it
equals 4x4 + 3x3 + 2x+ 1.

This does take quite a bit of time however, so in an exam it may not be appropriate
to do this full check. However, even if we are short of time, we can at least make
sure that the highest power terms on each side of the equals sign are equal, i.e., that
4x4 = (4x2)(x2) in this case. Another useful check is that the highest power of x
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in the remainder (one in this case) must be less than the highest power of x in the
divisor (two in this case).

1.6. The Binomial Theorem.
We have already had a look at finding powers of algebraic expressions in Example

1.5.3(3) where we found the square of 2x2 + 1. While this method can be used to
find higher powers, it is very complicated even for the third power and it is very easy
to make mistakes. The Binomial Theorem gives us a much easier method, which is
a lot less prone to mistakes.

I will start by stating the theorem and then explain what it all means.

Theorem 1.6.1 (The Binomial Theorem). Let x and y be algebraic expressions and
let n be a natural number, then

(2) (x+ y)n =
n∑

i=0

(
n

i

)
xn−iyi.

1.6.1. Summation Notation .
There are two pieces of notation on the right hand side of (2) that you may not

be familiar with, so let us look at them in turn.

The first is the summation sign
n∑

i=0

. The sign
∑

tells us that we have to add up

a collection of expressions and the i = 0 and the n tell us exactly how to do this.
The i is called a dummy variable since it can be changed to another letter without

affecting the sum. For example (x+ y)n =
n∑

k=0

(
n

k

)
xn−kyk means exactly the same

as (2); note we have replaced i with k on the right hand side. What the k = 0 and

the n mean is that we start by putting k = 0 in

(
n

k

)
xn−kyk, then we put k = 1,

then k = 2 and so on up until k = n and then add all the terms up. Here are some
examples of ‘summation notation’.

Example 1.6.2.

(1)
3∑

i=0

i = 0 + 1 + 2 + 3 = 6.

(2)
5∑

i=1

i2 = 12 + 22 + 32 + 42 + 52 = 55.

(3)
2∑

i=−1

i3 = (−1)3 + 03 + 13 + 23 = −1 + 0 + 1 + 8 = 8.

(4)
4∑

i=2

xi = x2 + x3 + x4.

(5)
4∑

i=1

ixi = x+ 2x2 + 3x3 + 4x4.
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Remark 1.6.3. Note that summation notation can be used with numbers or with
algebraic expressions.

This also means that (2) can be written as

(x+ y)n =

(
n

0

)
xn−0y0 +

(
n

1

)
xn−1y1 +

(
n

2

)
xn−2y2 + · · ·+

(
n

n

)
xn−nyn

=

(
n

0

)
xn +

(
n

1

)
xn−1y +

(
n

2

)
xn−2y2 + · · ·+

(
n

n

)
yn.(3)

1.6.2. Factorials and Binomial Coefficients .

Next we have to have a look at

(
n

i

)
. This is called a binomial coefficient and

you may have met the other notation nCi in school. It tells you the number of ways
you can choose i items from n items (where order doesn’t matter) and the numbers(
n

i

)
appear in Pascal’s triangle, which I have shown in Figure 3.

n = 0 1
n = 1 1 1
n = 2 1 2 1
n = 3 1 3 3 1
n = 4 1 4 6 4 1
n = 5 1 5 10 10 5 1
n = 6 1 6 15 20 15 6 1
n = 7 1 7 21 35 35 21 7 1
n = 8 1 8 28 56 70 56 28 8 1
n = 9 1 9 36 84 126 126 84 36 9 1

Figure 3. Pascal’s triangle.

To find

(
n

i

)
we look at the appropriate row and go to the i+ 1’th number from

the left. So, for example,

(
7

0

)
= 1 since the first number in the n = 7 row is 1 and(

7

1

)
= 7 since the second number in the n = 7 row is 7.

There are also a couple of interesting features to notice. Firstly, the triangle is

symmetric about the central vertical line, so we have

(
n

i

)
=

(
n

n− i

)
. Secondly,

each number in the triangle is the sum of the two numbers in the line above imme-

diately to the left and the right. This means that

(
n+ 1

i

)
=

(
n

i− 1

)
+

(
n

i

)
. We

will record these two features as a theorem.
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Theorem 1.6.4 (Binomial coefficient identities). If n and i are non-negative inte-
gers, then

(1)

(
n

i

)
=

(
n

n− i

)
.

(2)

(
n+ 1

i

)
=

(
n

i− 1

)
+

(
n

i

)
.

While we can read off the value of

(
n

i

)
from Pascal’s triangle for small values of

n, we need another method if n is large. Fortunately there is a formula that enables
us to calculate binomial coefficients for any value of n. I will state it first and then
explain the notation.

Theorem 1.6.5 (Calculation of binomial coefficients). If n and i are non-negative
integers, then

(4)

(
n

i

)
=

n!

i!(n− i)!
.

We now have to explain the notation n!

Definition 1.6.6 (Factorial). If n is a natural number then

n! = n(n− 1)(n− 2) · · · (3)(2)(1).

We also define 0! = 1.

So, for example, 5! = 5× 4× 3× 2× 1 = 120. Note that the size of factorials rise
extremely rapidly; even 60! is approximately 8.3 × 1081 and 70! is too large to be
calculated by most standard calculators. Luckily this doesn’t mean that we can’t

calculate

(
n

i

)
when n = 70, say, since we can cancel a lot of the terms in (4) as I

will now show.

n!

i!(n− i)!
=

n(n− 1)(n− 2) · · · (n− i+ 1)(n− i)(n− i− 1) · · · (2)(1)
i!(n− i)(n− i− 1) · · · (2)(1)

=
n(n− 1)(n− 2) · · · (n− i+ 1)

i!
.

Thus we also have the following.

Corollary 1.6.7 (Calculation of binomial coefficients). If n and i are natural num-
bers, then

(5)

(
n

i

)
=

n(n− 1)(n− 2) · · · (n− i+ 1)

i!
.

Remark 1.6.8. Corollary 1.6.7 does not work if either n or i is zero, since in these
cases, (5) does not make any sense. In other cases it is usually (5) rather than (4)
that we will use if we are calculating binomial coefficients by hand.
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Before we do some examples, we also note that Theorem 1.6.4(1) is very useful if
we want to calculate a binomial coefficient where i is close to n, since this reduces
the number of terms we have to calculate substantially. For example, if we wanted

to calculate

(
70

69

)
, then there would be 69 terms on the numerator and 68 terms on

the denominator of (5) (most of which cancel). On the other hand, using Theorem

1.6.4(1),

(
70

69

)
=

(
70

70− 69

)
=

(
70

1

)
which then equals

70

1
= 70 using (5).

Here are some more examples of calculating binomial coefficients.

Example 1.6.9.

(1)

(
10

1

)
=

10

1
= 10.

(2)

(
23

2

)
=

23× 22

2
= 253.

(3)

(
8

0

)
=

8!

0!8!
=

8!

(1)8!
= 1.

Here we used (4) rather than (5).

(4)

(
102

99

)
=

(
102

3

)
=

102× 101× 100

3× 2
= 171700.

Here we first used Theorem 1.6.4(1) to make (5) easier to use.

1.6.3. The Binomial Theorem .
We can now do some examples on The Binomial Theorem itself but first we will

note that since

(
n

0

)
=

(
n

n

)
= 1, (3) can be written as

(x+ y)n = xn +

(
n

1

)
xn−1y +

(
n

2

)
xn−2y2 + · · ·+ yn.

Example 1.6.10.

(1) (x+ y)2 = x2 +

(
2

1

)
xy + y2 = x2 + 2xy + y2.

(2) (x+ y)3 = x3 +

(
3

1

)
x2y +

(
3

2

)
xy2 + y3 = x3 + 3x2y + 3xy2 + y3.

Note that even for an example like this, a mistake is much more likely if we
just multiply the brackets out.

(3)

(x+ y)4 = x4 +

(
4

1

)
x3y +

(
4

2

)
x2y2 +

(
4

3

)
xy3 + y4

= x4 + 4x3y + 6x2y2 + 4xy3 + y4.

(4) (1 + y)3 = 13 +

(
3

1

)
12y +

(
3

2

)
(1)y2 + y3 = 1 + 3y + 3y2 + y3.
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(5)
(
x2 + y3

)2
=
(
x2
)2

+

(
2

1

)(
x2
) (

y3
)
+
(
y3
)2

= x4 + 2x2y3 + y6.

(6)

(2x− 1)4 = (2x)4 +

(
4

1

)
(2x)3(−1) +

(
4

2

)
(2x)2(−1)2 +

(
4

3

)
(2x)(−1)3 + (−1)4

= 16x4 + 4
(
8x3
)
(−1) + 6

(
4x2
)
(1) + 4(2x)(−1) + 1

= 16x4 − 32x3 + 24x2 − 8x+ 1.

(7)(
3x− 2y−2

)4
=(3x)4 +

(
4

1

)
(3x)3

(
−2y−2

)
+

(
4

2

)
(3x)2

(
−2y−2

)2
+

(
4

3

)
(3x)

(
−2y−2

)3
+
(
−2y−2

)4
=81x4 + 4

(
27x3

) (
−2y−2

)
+ 6

(
9x2
) (

4y−4
)
+ 4(3x)

(
−8y−6

)
+ 16y−8

=81x4 − 216x3y−2 + 216x2y−4 − 96xy−6 + 16y−8.

(8)

(3− 5)3 = 33 +

(
3

1

)
32(−5) +

(
3

2

)
(3)(−5)2 + (−5)3

= 27 + (3)(9)(−5) + 3(3)(25)− 125

= −8.

Since (3 − 5)3 = −8, this example shows that we get what we expect when
x and y are numbers.
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